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Gross(2001) Let B be a tropical affine manifold(a manifold with transitional
maps in R"™ x GL,(Z) C Aff(R™)), 3 local system A C Tg locally generated by
3%1, 3%2, "'6%”7 {y;} are local coordinates. We also have A C T} generated by
dy1, ...dy,. These A and A are well defined.

Define X(B) := Tg/A and X (B) = T /A over B.Then X (B) and X (B) are
complex manifold and symplectic manifold respectively. This is semi-flat SYZ.
A toy picture. Not possible for more complex examples because they all have
Euler characteristics 0.

To allow singular fibers, let By C B where By has an affine structure, A :=
B\ By codim = 2. So after compactifying the spaces we have:

X(By) ¢ X(B) X < X(By)
\ 1 \ {
By, Cc B B, C B,

wishing that X (B) is a complex manifold and X (B) is a symplectic manifold.
e symplectic world: is true. Castano-Bernard-Matessi dim = 3.
e complex world: known that this doesn’t happen.

Now we modify € > 0, X.(By) = Tp,/eA. When € — 0 :, this is the large
complex structure limit.

Goal: modify complex structure for small e(Fukaya 2001, Chan,Leung,Ma).
Seems very hard.

Local model for degeneration(e — 0) is C"*! — C, (2o, Z1, ..., Tn) — ToT1...Tn.

Exercise. Take 0 < § < 1,t € C*. Let Ns; = {(z0,..., ) € C"T|z| <
8, [z =t}. We have T™ fibration N5, — R™, (zg, ..., Tn) — (lfﬂml N l;’gj}m‘ ).
There is a large open subset U of standard simplex

Conv{0,(1,...,0),...,(0,...., 1)}

such that Ns; = X (U),e 1 = _ loglt]
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Exercise. Generalize the statement to monomial morphism X, — C given by
m. Analog of N5, = X.(U), U is a large open subset of o N{(m,-) = 1}.

Moral:(First discussions with Bernd) Understand B by considering toric de-
generations X — C which locally looks toric.

Bernd (2000, work with Schréer): observed interchange under mirror sym-
metry of data controlling irreducible components of a degeneration and data
controlling 0-dimentional strata of mirror. Logarithmic geometry.

Log geometry

Definition. A log structure on a scheme X is data of

o Mx a sheaf of (commutative, with unit) monoids on X



ax : Mx — Ox a monoid homomorphism with monoid structure in Ox
given by multiplication such that ax : ax' (O%) — O% is an isomorphism.

We call the triple (X, Mx,ax) a log scheme. A morphism of log schemes

(X, Mx,ax) = (Y, My,ay) is a scheme morphism f: X — Y along with
: f_lMy — M x with

1oy Lo oy

Key examples:

The divisorial log structure. Let D C X be a divisor, j : X\D — X,
Mx = (j*(’)}\D) N Ox which is the sheaf of regular functions on X
invertible on X\D. ax : Mx < Ox is the obvious inclusion. Note if
given pairs (X, D) and (Y, E) the f : X — Y s.t. f*¢ vanishes only on
D if ¢ vanishes only on E, i.e. f~1(E) C D then f : X — Y is a log
morphism.

Speck! Standard log point. X = Speck, Mespeck '=k* ® N and

o, n) = r, ifn=0
Y10, ifn#0

Pullback log structure. f : X — Y a scheme morphism, My, ay a log
structure on Y. Define a log structure on X,

F My = (fT"My @ 0%)/ ~
with (p,1) ~ (1, f*(ay (p))) if ay (p) € Of. f'My 25 f10y L5 Ox.
How to visualize log structure? Ghost sheaf: Given (Y, My), let My =

-1 R

My/a_l(o;). 1— O;} a—) MY — MY — 0.
E.g Y = (A2 V(xy)).

(D N

Yay®

py"




My = Nv(x) 5> Nv(y).
Fact: f*My = f~1 My
e.g. X = V(xy) with pull back log structure. Then My is scheme which

knows it is sitting inside AZ2.

e Let P be a toric monoid, i.e. a rational polyhedral cone ¢ C My and
P =o0nM. X = Speck[P] D U big torus orbit. D = X\U =union
of toric divisors on X. A log scheme is said to be fine saturated(fs) if
(étale) locally it arises as a pull back via a morphism X — Speck[P].
Note specifying such morphism is the same as giving a map P — Ox ~
k[P] - Ox ~ X — Speck[P]. Pullback toric log structure. The map
P — Ox is called a chart for the log structure.

Why Log structure? Kato: Log structures are "magic powder” making sin-
gular varieties smooth. We can translate all properties of schemes into properties
of log schemes. And we have a notion of log smooth.

Etale locally the log smooth morphisms look like

X —— Speck[P]

Pk

Y —— Speck|[Q]

with f’ induced by 6 : @ — P injective. k[Q] — k[P] such that induced
morphism X — Y Xgpeck[q) Speck[P] is smooth in the ordinary sense.

Example.
X = A"t ——5 Speck[N"H1]

| |

Y = Al — Speck|N]
induced by N — N"T1 1 — (1,...,1). Now this is log smooth. Pullback this to

V(xg...t,) — A"F!
00— AL
Then V (zg, ..., xy) s also log smooth.
Exercise. Check the log structure on 0 is the standard log structure Speck?.

Common situation:

X 2 A
cC 2 0



degeneration of Calabi-Yau. Give (X,Xp) — (C,0) divisorial log structure.
Pullback of the log structure to X — 0 is still viewed as smooth!

E.g.X = V(tfy + xor1z223) C P3 x Al, degeneration of K3 surfaces. Xy =
P2UP2UP2UP2. X, <+ X, central fiber of a mirror family. Exchanges combina-
torial information about components and log structure at 0-dimensional strata
X has 24 singularities along Sing(Xp), so the log structure is not fs at these
points.
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Continue the introduction to log geometry.

o X L5 Speckt, standard log point. f*: f~1(k* @ N) = Mx. f~L(k* @ 0)
maps to ay' (k¥) C O%. Only need to know what p = f°(1,1) is, must
satisfy ax(p) = 0. This is the only information.

° SpeckT i> X gives a point x € X. fb : f‘lMX = Mx, = k*®N.
Mx . =0%, ® My . Determined by a map Mx, — k* @ N, ie.

an element, of Int(Hom(Mx ,,N)) and an element of the algebraic torus
Hom(Mx ., k*). Let X = (A% V(zy)).

[
Speck!

Mz g =N = Myz g, (a,) — z®y?. The map N?> — N is determined
by (a,b) € N by (a, ) — aa + b, neither a nor b can be 0.

Now we are going to talk about tropicalization and see what the extra in-
formation in log geometry mean.
Tropicalization of (fs) log schemes

Let X be a fs log scheme, z € X, ox = Hom(Mx ,,RE)). If 2,y € X,
x € {y}~, then there is a generalization map N

MXJ — MX,y



which induces o, — o, which is an inclusion of faces(fs condition). Define 3(X)
to be the polyhedral cone complex obtained by gluing all o, via these face maps.
e.g. (PQ, LO U L1 @] LQ)

) fan for P?
N
N

Exercise. If one applies this construction to a tori variety X with standard
toric log structure, then you get the fan for X, as abstract polyhedral complex.

Functorial: f : X — Y, fb : My,f(z) = Mx . B(f) : 0, = 0y Glue
together we get X(f) : X(X) — %(Y). E.g. Speck! — A2,

HOII?[(I\I7 Rzo) = RZO — HOHI(NQ, Rzo) = RQZO
1 — (a,b)

where (a,b) determines the map My g @b, N.

$(A?)

Subdividing Rzzo gives a toric blowup of A%. An element of Hom(My2 o, k*) =

(k*)? determines a point on exceptional divisor. This describes all morphisms
Speck!? — A? up to isomorphisms of Speck’. There is k* worth of automorphism.

Speck! —— A?
Speckt
Log smooth curves

Let 7 : C' — W be a log morphism [convention: write C, W for the underly-
ing schemes| such that

e 7 is log smooth and flat



e All scheme theoretical fibers are reduced and dimension 1

We call this a family of log curves. Description of log curves over W = SpecA.
A a complete local ring, with log structure coming from a chart ¢ : Q — A
where @ is a toric monoid. C has 3 kinds of points:

e General points, étale locally
C = SpecA[z].
Chart for log structure is Q@ — Alz], ¢ — ¢(q).

e Marked points
C = SpecA[z].

Log chart Q ® N — A[z], (¢,n) = ¢(q)z"

e Nodal points
C = SpecAlz, y]/(zy — ¢(p)),

for some p € Q. p # 0 and chart QEuN? — Alr. )/ (xy—o(p)). (4. (a.5))
©0(q)x%y?, and Q @y N? is defined using maps 1 — p, 1 — (1,1). Q&nN? =
QoN/~ (a+p,(8,7) ~ (a,(B+1,7+1)).

Tropicalize C — W = (Speck, k* ® Q), where a(r,q) = { g’ Z;g . X(m)

E(C) = (W) = 0g = Hom(Q,R>(). Cones of 3(C) associated to 3 types of
points:

e Generic point n € C gives 0, = 0¢

e p a marked points of C. M¢c, =Q &N, X() : 0, = 0o X R RiEN Q.

e g anode. Mc,=Q ®yN? where the maps N — Q,N — N? are given by
1 pand 1+ (1,1). 0, = Hom(Mc 4, R>0) = 0 xR, R,

0Q XRZO R

>0
A \
o R2
Q >0
P
(a,b)—~a+b
% (m) =t (m) = {(a, O\G +b= }, which is a line segment.

N



Example. Fiber of ¥(m) : 3(C) — (W) over m € L(W).

Co

Stable log maps
Let X — S be a log morphism. A stable log map with target X/S is a
diagram
f

P

and sections py, ..., p, : W — C whose images coincide with the marked points
of C(written as (f : C/W — X/S,p1,...pn)) where

e 7 is a family of log curves
o f: C/W — X is a stable map in ordinary sense.
Main Theorem.

Theorem. (G-Siebert-Abramovich-Chen-Marcus- Wise)

e 3 a moduli space #3(X/S) of stable log maps of "type 5”(5: curves class
+ genus + #marked points + contact orders)

o If X — S is proper, #3(X/S) — S is proper

o If further X — S is log smooth, then #p(X/S) carries a virtual funda-
mental class

We will talk tomorrow about this moduli space.
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(X,D), D C X smooth divisor in smooth X. 3(C,p1,...,pn) ER (X,D) if
fﬁl(D) < {plv"'apn}‘

Po Mxjpy — Moy,
Po Mxjey — Mo,

fp)eD: N 2, N
fp)g¢D: 0 % N

t = 0 a local equation for D. v a local parameter for C at p;. t — f*(t) =t -f =
pv*»i, where ¢ is invertible. u,, is order of tangency of C' at p; with D.

In general, given stable log map f : (C,p1,...,pn) — X, where C over
W = (Speck, k*®Q), f° :Mx,f(pi) — Mcp, = QBN 22, N. This composition
up, is the contact order at p;.

Example. (X,D) = (P? LoUL; U Ls). Genus 0, degree 1.

A

_—_ Up ..

Mx tpiy = N> =5 N. oy, = (1,0), up, = (0,1).

The curve can degenerate entirely into one of the divisors. And the marked
points can move around as well.




We can also pose different contact order conditions, e.g. u, = (1,1). Then
p cannot move around anymore.

up, = (1,1)
/
| N\

More on .#3(X/S) which is a log DM stack. 3 : genus, degree, #marked
points, contact order. Does not classify all possible stable log maps.

(C,Meg) —= (X, Mx) ~ (CMcdN) —— (X, Mx &N")

| l

(W, Mw) (W, Mw & N")

Main problem is that the category of diagram like this won’t be finite and
possibly have infinite automorphism. So we introduce basicness.

A3(X/S) classifies basic stable log maps. Basicness is defined pointwise on
w.

C X Tropicalize Z(C) =(f) E(X)
W = (Speck, k* ® Q) (W) =o0q

The family is basic if this family of tropical curves is the moduli space of tropical
curves in 3(X) of a fixed type.

Example. For the vanilla case, Q = 0. For the case that the curve degenerates
into one of the divisors, Q = N. Further, for the case when one of the marked
points moves to one of the intersection points of divisors, QQ = N2.




-
v

Now we start talking about mirror symmetry. Mirrors to log CY surfaces(G-
Hacking-Keel). Fix (X, D) where X is a projective non-singular rational surface,
D € | — Kx| which is a cycle of P1s.

We will illustrate the process by an example. Let dP5 = del Pezzo surface
of degree 5. —K x can be represented by a cycle of 5 —1 curves.

EzDJ == 6ij

10



Consider B = X(X, D) :

pi < D;

Oiiv1 < DiNDigq

P4 Ps

1. Give B\{0} an affine structure. Let V; = Int(o;_1,; N 0;4+41). Identify Vi
with the subset of R2.

Pi+1

This comes from the intersection theory. For a fan picture of three rays
given by (0,1), (1,0) and (-1, —D;.D;), the divisor corresponding to (0,1)
has a self-intersection number D;.D;. So for dP5 we have:

P5

Glue the two o12s. There has to be a singularity at the origin. So we have
the following affine manifold with a singular point at the origin. Bernd

11



would put the singularity on the edges and have another affine manifold.

2. Build the canonical scattering diagram on B. Fix d C 0,41 a ray of
rational slope.

Pi+1

(a,b) ged(a,b) =1

Pi
Attach a function fy to d.

fa=exp(d ksNpz’(afal, ) ™")
B
To make sense of this, first fix a toric monoid P C Hy(X, Z) with P* = {0}
and if 8 € Hyo(X,Z) represents an effective curve, then 8 € P. We write
28 € k[P]. x;,x;11 variables to be explained. We sum over all § € P with

/ﬂga, j =1
B.Dj =< kgb, j=i+1
0,  Jj¢{ii+1}
Np = # of genus 0, 1—pointed curves representing the class § with contact

order u, = (kga, kgb). We use virtual fundamental class to calculate Ng.
Note Ng #0= B € P.

DiJrl
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We collect all these rays: 2 = {(d, f4)}. Now back to dPs. The only nonzero

fas are those associated to p; whose nonzero terms are given by 8 = multiple

covers of E;. And Pandharipande knows Nyg, = % So

(71)k+1
foo = eap(y_ ko) = 14 2Pt
k

What do we do with a collection 2 of rays?
Pick a monomial ideal I C k[P] such that Ay := k[P]/I is Artinian. Goal:
Build an affine scheme flat over SpecA;. For i =1,...,n let

1 —D?
Ui = SpecA[ai v, o i)/ (wioamips — 2P, 70 1),

where p; is the ray of B corresponding to D; and f,, is the function associated
to direction (1,0). U; canonically contains open subsets

Uifl,i = {3?1;1 75 0} = SpeCA[[,Til l‘il]

=171

Uiiv1 = {zit1 # 0} = SPeCAI[xz’i-:pxiil]'

Both canonically isomorphic to SpecA; x (k*)2. Now glue U; to U; 41 by
Ui DUiiy1 — Ui it1 C Uit
9,%@

where 6, 5 is a composition of wall-crossing automorphisms. When we cross
(R>0(a,b), fia,p)), we use @; — x; f°, xi41 — @41/~ as the wall-crossing auto-
morphism.
Pi+1
Y

Pi

This gives a scheme A7 — SpecA;. A7 is an infinitesimal deformation of
V., \{0}, where V,, = A2 U..UA?2 C AL We haven’t choose the

T1,T2 Tn,T1 HTn "
scattering diagram yet. If we choose the canonical scattering diagram, then we
will have the following diagram.

Theorem. (GHK). X1 = Specl'(X},Oxe) — A is a flat deformation of V.

Tomorrow we will talk about the theorem further.
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Back to the theorem.

Theorem. (GHK). X1 = Specl'(X},Oxe) — A is a flat deformation of V.
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Key point: need surjectivity
L(X7,Oxe) = T'(V,, Oys ) =T(V,,Ov,,).

['(V,,, Oye ) has basis {z¢z?,,|1 < i < n,a,b € N} +> B(Z) which corresponding
to p € B(Z). We build a theta function 0, € T'(X7, Oxe).

-Q

b = Y Monofs),

S
where Mono(+y) is the final monomial on ~.

For the example dPs, 6; = 0p,, where P;s are the primitive point for each
Pi-
Exercise. 0; 10; 11 = 2P . (; + 2P,

Now we will see a simple product rule which will tell us the result in the
exercise. Given p,q € B(Z),

Op-0g= > Qpgrby, pgr € Ap,
reB(Z)

where opqr = Z% e C1Cva where we sum over all broken lines ~,,7y, with
asymptotic directions p, ¢ respectively, basepoint r € 0; ;41 = R2>07 r = (a,b).

_ ap _bp
Mono(v,) = ¢4, z; hy

Mono(vq) = ¢y, ;" zbe

i+1
with (a,b) = (ap + aq, by + by).

3

oq
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To prove the product rule, expand 6,6, at base-point 7.

6, =" Mono(,)

Tp
0, = Z Mono(vg).
Ya

Look at coefficient of z¢2?, ; in the expanded product rva Mono(7,)Mono (7).
The formula given for a, is the coefficient of z¢a?, ;.

Claim. if xfz?,, appears in some 6, expanded at r, then s = r and the
monomial has coefficient 1. Prove by picture. Only one possible broken line has
asymptotic direction r.

For example, when we take the product of two monomials in k‘[mfl,xf?],

there is a picture to explain this. The philosophy behind is the same.

General Mirror Construction(G-Siebert) Start with a log smooth pair (X, D)
over Speck, e.g. D is normal crossings. Will be able to define a ring in cases
either £(Kx + D) is nef or (X, D) is log CY, i.e. X\D carries a nowhere
vanishing top dimensional holomorphic form with at most simple poles along D
= Kx+ D => a;D;;a; > 0. We will stick to the first case while the second
will spare us the worry of the existence of the minimal model.

Let B = ¥(X) (no affine structure). B(Z) set of integral points in B. P C
H5(X,Z) a toric monoid containing all classes of effective curves on X. I C k[P]
a monomial ideal with A; = k[P]/I Artinian. Goal: Define an A;—algebra
structure on the A;—module

Ry = ®pep@)Ar - bp
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Op-0g=">  Cpgrby, Cpgr € As

reB(Z)
apgr =y N, 2P N €QCk.
BeP\I

Define of the qurz For r € B(Z) there is a minimal cone of ¥(X) containing

r, corresponding to a stratum Z,. of X. Pick a general z € Z,. Npﬁqr = #
3—pointed genus 0 curves of class 8 with contact orders p,q and —r at the 3
points, and the point with contact order with —r maps to the chosen point z.

Negative order of tangency — punctured invariants(joint with Abramovich-
Chen-G-S). Suppose given C' — W log smooth family of curves with section
p: W — C disjoint from all special points on C. To mark the point p, we use
the log structure M¢ @0z, M) — Oc, (s1,82) — a(s1)a(s2),i.e.(ps1, s2) =
(81, ps2) for invertible . To puncture the point, consider a subsheaf

£ C Mc ®o, MZ
where gp indicates the Grothendieck group. Here
&= {(81,82)|32 S M(Q}p) if a(sy) # 0}.

a: &= Oc,a(sy,ss) = { 84(81)04(82), ii ZE:; ig

Example. M¢ = Op = £ = M ¢ ).
When C' is smooth curve, M¢c = Of @& N,

s, n=20
a(s,n) = 0 n£0

Not finitely generated,

hence not fs

£ is not preserved under infinitesimal definitions. So deformation of stable maps

C——X

|

w
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is locally obstructed. Need to work with a relative obstruction Theory over an
Artin stack which encodes a combinatorial obstruction to deforming, not neces-
sarily pure dimensional. So virtual fundamental class is also affected. In special
cases, can prove equi-dimensional, including in definition of Npﬁqr. Contact order

b - _ _
at punctures: f : Mx ¢ = Ep S Mg, @7 %2, 7. And the composition u,
is the contact order.

Example. X is a smooth surface, D a —1 curve on X f:C — X an isomor-
phism with D, then puncture (C,p) — X exists. Mc = OF & N.

Back to X = dPs with divisors D = )", D; and E;,i = 1,...,5. So what is
0;—10;117

fp is the unit of the ring. » = 0,2, = X,z € X. Need curves C' meeting
D;_1,D;41 transversally at one point and passing through z. [C].D; = 0 for
j¢{i—1,i+1}. SoC = D;+ E;. dim|D; + E;| = 1. Thus 3 a unique curve in
this linear system passing through z. Coefficient of 0 is zPi+Fi. Coefficient of
0;, 7, = D;,z € D;. Curves transversal to D;_1, D;11 and order tangency with
Di being —1 at the pOiIlt zZ: C.Di_l = 17C.DIL‘+1 = I,ODZ =—-1. SoC = Di-
Coefficient is zP7. So

91‘_191‘4_1 = ZDH_E"’HO + zD"Hi.
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