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Gross( 2001) Let B be a tropical affine manifold(a manifold with transitional

maps in Rn o GLn(Z) ⊂ Aff(Rn)), ∃ local system Λ ⊂ TB locally generated by
∂
∂y1

, ∂
∂y2

, ... ∂
∂yn

, {yi} are local coordinates. We also have Λ̌ ⊂ T ∗B generated by

dy1, ...dyn. These Λ and Λ̌ are well defined.
Define X(B) := TB/Λ and X̌(B) = T ∗B/Λ̌ over B.Then X(B) and X̌(B) are

complex manifold and symplectic manifold respectively. This is semi-flat SYZ.
A toy picture. Not possible for more complex examples because they all have
Euler characteristics 0.

To allow singular fibers, let B0 ⊂ B where B0 has an affine structure, ∆ :=
B\B0 codim = 2. So after compactifying the spaces we have:

X(B0) ⊂ X(B) X̌ ⊂ X̌(B0)
↓ ↓ ↓ ↓
B0 ⊂ B B0 ⊂ B,

wishing that X(B) is a complex manifold and X̌(B) is a symplectic manifold.

• symplectic world: is true. Castano-Bernard-Matessi dim = 3.

• complex world: known that this doesn’t happen.

Now we modify ε > 0, Xε(B0) = TB0
/εΛ. When ε → 0 :, this is the large

complex structure limit.
Goal: modify complex structure for small ε(Fukaya 2001, Chan,Leung,Ma).

Seems very hard.
Local model for degeneration(ε→ 0) is Cn+1 → C, (x0, x1, ..., xn)→ x0x1...xn.

Exercise. Take 0 < δ < 1, t ∈ C∗. Let Nδ,t := {(x0, ..., xn) ∈ Cn+1||x| <
δ,
∏
xi = t}. We have Tn fibration Nδ,t → Rn, (x0, ..., xn)→ ( log|x1|

log|t| , ...,
log|xn|
log|t| ).

There is a large open subset U of standard simplex

Conv{0, (1, ..., 0), ..., (0, ..., 1)}

such that Nδ,t ∼= Xε(U), ε−1 = − log|t|2π .

Exercise. Generalize the statement to monomial morphism Xσ → C given by
m. Analog of Nδ,t ∼= Xε(U), U is a large open subset of σ ∩ {〈m, ·〉 = 1}.

Moral:(First discussions with Bernd) Understand B by considering toric de-
generations X → C which locally looks toric.

Bernd(2000, work with Schröer): observed interchange under mirror sym-
metry of data controlling irreducible components of a degeneration and data
controlling 0-dimentional strata of mirror. Logarithmic geometry.
Log geometry

Definition. A log structure on a scheme X is data of

• MX a sheaf of (commutative, with unit) monoids on X
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• αX :MX → OX a monoid homomorphism with monoid structure in OX
given by multiplication such that αX : α−1

X (O∗X)→ O∗X is an isomorphism.

We call the triple (X,MX , αX) a log scheme. A morphism of log schemes
f : (X,MX , αX)→ (Y,MY , αY ) is a scheme morphism f : X → Y along with
f [ : f−1MY →MX with

f−1MY
f[ //

αY

��

MX

αX

��
f−1OY

f∗ // OX .

Key examples:

• The divisorial log structure. Let D ⊂ X be a divisor, j : X\D ↪→ X,
MX := (j∗O∗X\D) ∩ OX which is the sheaf of regular functions on X

invertible on X\D. αX : MX ↪→ OX is the obvious inclusion. Note if
given pairs (X,D) and (Y,E) the f : X → Y s.t. f∗φ vanishes only on
D if φ vanishes only on E, i.e. f−1(E) ⊂ D then f : X → Y is a log
morphism.

• Speck† Standard log point. X = Speck, MSpeck := k∗ ⊕ N and

α(r, n) =

{
r, if n = 0
0, if n 6= 0

• Pullback log structure. f : X → Y a scheme morphism, MY , αY a log
structure on Y . Define a log structure on X,

f∗MY := (f−1MY ⊕O∗X)/ ∼

with (p, 1) ∼ (1, f∗(αY (p))) if αY (p) ∈ O∗Y . f−1MY
αY−−→ f−1OY

f∗−→ OX .
How to visualize log structure? Ghost sheaf: Given (Y,MY ), let MY =

MY /α
−1(O∗Y ). 1→ O∗Y

α−1

−−→MY →MY → 0.

E.g. Y = (A2, V (xy)).

ψxn

ψyn

ψxayb

N

NN2
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MY = NV (x) ⊕ NV (y).

Fact: f∗MY
∼= f−1MY .

e.g. X = V (xy) with pull back log structure. Then MX is scheme which
knows it is sitting inside A2.

• Let P be a toric monoid, i.e. a rational polyhedral cone σ ⊂ MR and
P = σ ∩ M . X = Speck[P ] ⊃ U big torus orbit. D = X\U =union
of toric divisors on X. A log scheme is said to be fine saturated(fs) if
(étale) locally it arises as a pull back via a morphism X → Speck[P ].
Note specifying such morphism is the same as giving a map P → OX  
k[P ] → OX  X → Speck[P ]. Pullback toric log structure. The map
P → OX is called a chart for the log structure.

Why Log structure? Kato: Log structures are ”magic powder” making sin-
gular varieties smooth. We can translate all properties of schemes into properties
of log schemes. And we have a notion of log smooth.

Étale locally the log smooth morphisms look like

X //

f

��

Speck[P ]

f ′

��
Y // Speck[Q]

with f ′ induced by θ : Q → P injective. k[Q] → k[P ] such that induced
morphism X → Y ×Speck[Q] Speck[P ] is smooth in the ordinary sense.

Example.

X = An+1

��

= // Speck[Nn+1]

��
Y = A1 = // Speck[N]

induced by N→ Nn+1, 1→ (1, ..., 1). Now this is log smooth. Pullback this to

V (x0...xn) //

��

An+1

��
0 // A1.

Then V (x0, ..., xn) is also log smooth.

Exercise. Check the log structure on 0 is the standard log structure Speck†.

Common situation:
X ⊇

��

X0

��
C ⊇ 0
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degeneration of Calabi-Yau. Give (X ,X0) → (C, 0) divisorial log structure.
Pullback of the log structure to X → 0 is still viewed as smooth!

E.g.X = V (tf4 + x0x1x2x3) ⊂ P3 × A1, degeneration of K3 surfaces. X0 =
P2∪P2∪P2∪P2. X0 ↔ X̌0 central fiber of a mirror family. Exchanges combina-
torial information about components and log structure at 0-dimensional strata
X has 24 singularities along Sing(X0), so the log structure is not fs at these
points.

20170919 Mark Gross Cambridge(VC KIAS)
Continue the introduction to log geometry.

• X f−→ Speck†, standard log point. f [ : f−1(k∗ ⊕ N) →MX . f−1(k∗ ⊕ 0)
maps to α−1

X (k∗) ⊆ O∗X . Only need to know what ρ = f [(1, 1) is, must
satisfy αX(ρ) = 0. This is the only information.

• Speck†
f−→ X gives a point x ∈ X. f [ : f−1MX = MX,x → k∗ ⊕ N.

MX,x = O∗X,x ⊕MX,x . Determined by a map MX,x → k∗ ⊕ N, i.e.

an element of Int(Hom(MX,x,N)) and an element of the algebraic torus
Hom(MX,x, k

∗). Let X = (A2, V (xy)).

Speck†

MA2,0 = N2 → MA2,0, (α, β) 7→ xαyβ . The map N2 → N is determined
by (a, b) ∈ N2 by (α, β) 7→ aα+ bβ, neither a nor b can be 0.

Now we are going to talk about tropicalization and see what the extra in-
formation in log geometry mean.
Tropicalization of (fs) log schemes

Let X be a fs log scheme, x ∈ X, σX = Hom(MX,x,R+
≥0). If x, y ∈ X,

x ∈ {y}−, then there is a generalization map

MX,x →MX,y
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which induces σy → σx which is an inclusion of faces(fs condition). Define Σ(X)
to be the polyhedral cone complex obtained by gluing all σx via these face maps.
e.g. (P2, L0 ∪ L1 ∪ L2).

N2

N
N

N

fan for P2

Exercise. If one applies this construction to a tori variety X with standard
toric log structure, then you get the fan for X, as abstract polyhedral complex.

Functorial: f : X → Y , f
[

: MY,f(x) → MX,x. Σ(f) : σx → σy. Glue

together we get Σ(f) : Σ(X)→ Σ(Y ). E.g. Speck† → A2.

Hom(N,R≥0) = R≥0 → Hom(N2,R≥0) = R2
≥0

1 7→ (a, b)

where (a, b) determines the map MA2,0
(a,b)−−−→ N.

Σ(A2)

Subdividing R2
≥0 gives a toric blowup of A2. An element of Hom(MA2,0, k

∗) =

(k∗)2 determines a point on exceptional divisor. This describes all morphisms
Speck† → A2 up to isomorphisms of Speck†. There is k∗ worth of automorphism.

Speck†

∼=
��

// A2

Speck†

<<

Log smooth curves
Let π : C →W be a log morphism [convention: write C,W for the underly-

ing schemes] such that

• π is log smooth and flat
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• All scheme theoretical fibers are reduced and dimension 1

We call this a family of log curves. Description of log curves over W = SpecA.
A a complete local ring, with log structure coming from a chart ϕ : Q → A
where Q is a toric monoid. C has 3 kinds of points:

• General points, étale locally

C ∼= SpecA[x].

Chart for log structure is Q→ A[x], q 7→ ϕ(q).

• Marked points
C ∼= SpecA[x].

Log chart Q⊕ N→ A[x], (q, n) 7→ ϕ(q)xn

• Nodal points
C ∼= SpecA[x, y]/(xy − ϕ(ρ)),

for some ρ ∈ Q, ρ 6= 0 and chartQ⊕NN2 → A[x, y]/(xy−ϕ(ρ)), (q, (a, b)) 7→
ϕ(q)xayb, and Q⊕NN2 is defined using maps 1→ ρ, 1→ (1, 1). Q⊕NN2 =
Q⊕ N2/ ∼, (α+ ρ, (β, γ)) ∼ (α, (β + 1, γ + 1)).

Tropicalize C → W = (Speck, k∗ ⊕ Q), where α(r, q) =

{
r, q = 0
0, q 6= 0

. Σ(π) :

Σ(C) → Σ(W ) = σQ = Hom(Q,R≥0). Cones of Σ(C) associated to 3 types of
points:

• Generic point η ∈ C gives ση = σQ

• p a marked points of C. MC,p = Q⊕ N, Σ(π) : σp = σQ × R≥0
pr1−−→ σQ.

• q a node. M̄C,q = Q⊕N N2 where the maps N→ Q,N→ N2 are given by
1 7→ ρ and 1 7→ (1, 1). σq = Hom(MC,q,R≥0) = σQ ×R≥0

R2
≥0.

σQ ×R≥0
R2
≥0

Σ(π)
yy %%

σQ
ρ

%%

R2
≥0

(a,b) 7→a+byy
R≥0

Σ(π)−1(m) = {(a, b) ∈ R2
≥0|a+ b = ρ(m)}, which is a line segment.
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Example. Fiber of Σ(π) : Σ(C)→ Σ(W ) over m ∈ Σ(W ).

C0

Q

Stable log maps
Let X → S be a log morphism. A stable log map with target X/S is a

diagram

C

π

��

f // X

��
W // S

and sections p1, ..., pn : W → C whose images coincide with the marked points
of C(written as (f : C/W → X/S, p1, ...pn)) where

• π is a family of log curves

• f : C/W → X is a stable map in ordinary sense.

Main Theorem.

Theorem. (G-Siebert-Abramovich-Chen-Marcus-Wise)

• ∃ a moduli space Mβ(X/S) of stable log maps of ”type β”(β: curves class
+ genus + #marked points + contact orders)

• If X → S is proper, Mβ(X/S)→ S is proper

• If further X → S is log smooth, then Mβ(X/S) carries a virtual funda-
mental class

We will talk tomorrow about this moduli space.

20170918 Mark Gross Cambridge(VC KIAS)
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(X,D), D ⊆ X smooth divisor in smooth X. ∃(C, p1, ..., pn)
f−→ (X,D) if

f−1(D) ⊆ {p1, ..., pn}.

C

D

p3

p1

p2

p4 X

f [ : MX,f(pi) → MC,pi

f̄ [ : MX,f(pi) → MC,pi

f(pi) ∈ D : N
upi−−→ N

f(pi) /∈ D : 0
0−→ N

t = 0 a local equation for D. v a local parameter for C at pi. t 7→ f∗(t) = t ·f =
ϕvupi , where ϕ is invertible. upi is order of tangency of C at pi with D.

In general, given stable log map f : (C, p1, ..., pn) → X, where C over

W = (Speck, k∗⊕Q), f̄ [ :MX,f(pi) →MC,pi = Q⊕N pr2−−→ N. This composition
upi is the contact order at pi.

Example. (X,D) = (P2, L0 ∪ L1 ∪ L2). Genus 0, degree 1.

p1

p2

p1
p2

MX,f(pi) = N2
upi−−→ N. up1 = (1, 0), up2 = (0, 1).

The curve can degenerate entirely into one of the divisors. And the marked
points can move around as well.
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We can also pose different contact order conditions, e.g. up = (1, 1). Then
p cannot move around anymore.

up = (1, 1)

More on Mβ(X/S) which is a log DM stack. β : genus, degree, #marked
points, contact order. Does not classify all possible stable log maps.

(C,MC) //

��

(X,MX)

(W,MW )

 (C,MC ⊕ Nr) //

��

(X,MX ⊕ Nr)

(W,MW ⊕ Nr)

Main problem is that the category of diagram like this won’t be finite and
possibly have infinite automorphism. So we introduce basicness.

Mβ(X/S) classifies basic stable log maps. Basicness is defined pointwise on
W .

C //

��

X

W = (Speck, k∗ ⊕Q)

Tropicalize−−−−−−−→ Σ(C)
Σ(f) //

��

Σ(X)

Σ(W ) = σQ

The family is basic if this family of tropical curves is the moduli space of tropical
curves in Σ(X) of a fixed type.

Example. For the vanilla case, Q = 0. For the case that the curve degenerates
into one of the divisors, Q = N. Further, for the case when one of the marked
points moves to one of the intersection points of divisors, Q = N2.
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Now we start talking about mirror symmetry. Mirrors to log CY surfaces(G-
Hacking-Keel). Fix (X,D) where X is a projective non-singular rational surface,
D ∈ | −KX | which is a cycle of P1’s.

D = D1 + ...+DnD1

D2

D3

...

We will illustrate the process by an example. Let dP5 = del Pezzo surface
of degree 5. −KX can be represented by a cycle of 5 −1 curves.

D1

D2

D3

D4

D5

E1

E2
E3

E4

E5

Ei.Dj = δij
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Consider B = Σ(X,D) :

ρ1

ρ2

ρ3

ρ4 ρ5

σ12σ23

σ34

σ45

σ56 = σ51

ρi ↔ Di

σi,i+1 ↔ Di ∩Di+1

1. Give B\{0} an affine structure. Let Vi = Int(σi−1,i ∩ σi,i+1). Identify V i
with the subset of R2.

ρi−1

ρi

ρi+1

(−1,−Di.Di)

σi−1,i

σi,i+1
(1, 0)

(0, 1)

This comes from the intersection theory. For a fan picture of three rays
given by (0, 1), (1, 0) and (−1,−Di.Di), the divisor corresponding to (0, 1)
has a self-intersection number Di.Di. So for dP5 we have:

ρ3

(−1, 1)

ρ1

ρ2

ρ4

ρ5

ρ6

(0,−1)

(1, 0)

(0, 1) σ12

σ12

Glue the two σ12s. There has to be a singularity at the origin. So we have
the following affine manifold with a singular point at the origin. Bernd
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would put the singularity on the edges and have another affine manifold.

×

×

2. Build the canonical scattering diagram on B. Fix d ⊆ σi,i+1 a ray of
rational slope.

d

(a, b) gcd(a, b) = 1

ρi

ρi+1

Attach a function fd to d.

fd = exp(
∑
β

kβNβz
β(xai x

b
i+1)−kβ )

To make sense of this, first fix a toric monoid P ⊆ H2(X,Z) with P ∗ = {0}
and if β ∈ H2(X,Z) represents an effective curve, then β ∈ P . We write
zβ ∈ k[P ]. xi, xi+1 variables to be explained. We sum over all β ∈ P with

β.Dj =

 kβa, j = i
kβb, j = i+ 1
0, j /∈ {i, i+ 1}

Nβ = # of genus 0, 1−pointed curves representing the class β with contact
order up = (kβa, kβb). We use virtual fundamental class to calculate Nβ .
Note Nβ 6= 0⇒ β ∈ P.

Di

Di+1
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We collect all these rays: D = {(d, fd)}. Now back to dP5. The only nonzero
fds are those associated to ρi whose nonzero terms are given by β = multiple

covers of Ei. And Pandharipande knows NkEi = (−1)k+1

k2 . So

fρi = exp(
∑
k

k
(−1)k+1

k2
zkEix−ki ) = 1 + zEix−1

i .

What do we do with a collection D of rays?
Pick a monomial ideal I ⊆ k[P ] such that AI := k[P ]/I is Artinian. Goal:

Build an affine scheme flat over SpecAI . For i = 1, ..., n let

Ui = SpecAI [xi−1, x
±1
i , xi+1]/(xi−1xi+1 − z[Di]x

−D2
i

i fρi),

where ρi is the ray of B corresponding to Di and fρi is the function associated
to direction (1, 0). Ui canonically contains open subsets

Ui−1,i = {xi−1 6= 0} = SpecAI [x
±1
i−1, x

±1
i ]

Ui,i+1 = {xi+1 6= 0} = SpecAI [x
±1
i+1, x

±1
i ].

Both canonically isomorphic to SpecAI × (k∗)2. Now glue Ui to Ui+1 by

Ui ⊇ Ui,i+1

∼=−−−→
θγ,D

Ui,i+1 ⊆ Ui+1,

where θγ,D is a composition of wall-crossing automorphisms. When we cross
(R≥0(a, b), f(a,b)), we use xi 7→ xif

b, xi+1 7→ xi+1f
−a as the wall-crossing auto-

morphism.

ρi

ρi+1

γ

This gives a scheme X ◦I → SpecAI . X ◦I is an infinitesimal deformation of
Vn\{0}, where Vn = A2

x1,x2
∪ ... ∪ A2

xn,x1
⊆ Anx1,...,xn . We haven’t choose the

scattering diagram yet. If we choose the canonical scattering diagram, then we
will have the following diagram.

Theorem. (GHK). XI = SpecΓ(X ◦I ,OX◦I )→ AI is a flat deformation of Vn.

Tomorrow we will talk about the theorem further.

20170921 Mark Gross Cambridge(VC KIAS)
Back to the theorem.

Theorem. (GHK). XI = SpecΓ(X ◦I ,OX◦I )→ AI is a flat deformation of Vn.
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Key point: need surjectivity

Γ(X ◦I ,OX◦I )→ Γ(Vn,OV◦n) = Γ(Vn,OVn).

Γ(Vn,OV◦n) has basis {xai xbi+1|1 ≤ i ≤ n, a, b ∈ N} ↔ B(Z) which corresponding
to p ∈ B(Z). We build a theta function θp ∈ Γ(X ◦I ,OX◦I ).

Q

P

θP,Q =
∑
γ

Mono(γ),

where Mono(γ) is the final monomial on γ.
For the example dP5, θi = θPi , where Pis are the primitive point for each

ρi.

Exercise. θi−1θi+1 = z[Di] · (θi + z[Ei]).

Now we will see a simple product rule which will tell us the result in the
exercise. Given p, q ∈ B(Z),

θp · θq =
∑

r∈B(Z)

αpqrθr, αpqr ∈ AI ,

where αpqr =
∑
γp,γq

cγpcγq where we sum over all broken lines γp, γq with

asymptotic directions p, q respectively, basepoint r ∈ σi,i+1 = R2
≥0, r = (a, b).

Mono(γp) = cγpx
ap
i x

bp
i+1

Mono(γq) = cγqx
aq
i x

bq
i+1

with (a, b) = (ap + aq, bp + bq).

p

q
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To prove the product rule, expand θp, θq at base-point r.

θp =
∑
γp

Mono(γp)

θq =
∑
γq

Mono(γq).

Look at coefficient of xai x
b
i+1 in the expanded product

∑
γp,γq

Mono(γp)Mono(γq).

The formula given for αpqr is the coefficient of xai x
b
i+1.

Claim. if xai x
b
i+1 appears in some θs expanded at r, then s = r and the

monomial has coefficient 1. Prove by picture. Only one possible broken line has
asymptotic direction r.

r = (a, b)

For example, when we take the product of two monomials in k[x±1
1 , x±2

2 ],
there is a picture to explain this. The philosophy behind is the same.

(0, 0)

General Mirror Construction(G-Siebert) Start with a log smooth pair (X,D)
over Speck, e.g. D is normal crossings. Will be able to define a ring in cases
either ±(KX + D) is nef or (X,D) is log CY, i.e. X\D carries a nowhere
vanishing top dimensional holomorphic form with at most simple poles along D
⇒ KX + D =

∑
aiDi, ai ≥ 0. We will stick to the first case while the second

will spare us the worry of the existence of the minimal model.
Let B = Σ(X) (no affine structure). B(Z) set of integral points in B. P ⊆

H2(X,Z) a toric monoid containing all classes of effective curves on X. I ⊆ k[P ]
a monomial ideal with AI = k[P ]/I Artinian. Goal: Define an AI−algebra
structure on the AI−module

RI = ⊕p∈B(Z)AI · θp
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θp · θq =
∑

r∈B(Z)

αpqrθr, αpqr ∈ AI

αpqr =
∑
β∈P\I

Nβ
pqrz

β , Nβ
pqr ∈ Q ⊆ k.

Define of the Nβ
pqr: For r ∈ B(Z) there is a minimal cone of Σ(X) containing

r, corresponding to a stratum Zr of X. Pick a general z ∈ Zr. Nβ
pqr = #

3−pointed genus 0 curves of class β with contact orders p, q and −r at the 3
points, and the point with contact order with −r maps to the chosen point z.

Negative order of tangency → punctured invariants(joint with Abramovich-
Chen-G-S). Suppose given C → W log smooth family of curves with section
p : W → C disjoint from all special points on C. To mark the point p, we use
the log structure MC ⊕O∗CM(C,p) → OC , (s1, s2) 7→ α(s1)α(s2), i.e.(ϕs1, s2) =
(s1, ϕs2) for invertible ϕ. To puncture the point, consider a subsheaf

E ⊆MC ⊕O∗CM
gp
(C,p)

where gp indicates the Grothendieck group. Here

E = {(s1, s2)|s2 ∈M(C,p) if α(s1) 6= 0}.

α : E → OC , α(s1, s2) =

{
α(s1)α(s2), if α(s1) 6= 0
0, if α(s1) = 0

.

Example. MC = O∗C ⇒ E =M(C,p).

When C is smooth curve, MC = O∗C ⊕ N,

α(s, n) =

{
s, n = 0
0, n 6= 0

.

E ⊆MC,p ⊕M
gp

(C,p),p = N⊕ Z,

Ep = {(a, b)|b ∈ N if a = 0}.

Not finitely generated,

hence not fs

E is not preserved under infinitesimal definitions. So deformation of stable maps

C //

��

X

W
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is locally obstructed. Need to work with a relative obstruction Theory over an
Artin stack which encodes a combinatorial obstruction to deforming, not neces-
sarily pure dimensional. So virtual fundamental class is also affected. In special
cases, can prove equi-dimensional, including in definition of Nβ

pqr. Contact order

at punctures: f
[

:MX,f(p) → Ep ⊆ MC,p ⊕ Z pr2−−→ Z. And the composition up
is the contact order.

Example. X is a smooth surface, D a −1 curve on X f : C → X an isomor-
phism with D, then puncture (C, p)→ X exists. MC = O∗C ⊕ N.

Back to X = dP5 with divisors D =
∑
iDi and Ei, i = 1, ..., 5. So what is

θi−1θi+1?
θ0 is the unit of the ring. r = 0, Zr = X, z ∈ X. Need curves C meeting

Di−1, Di+1 transversally at one point and passing through z. [C].Dj = 0 for
j /∈ {i− 1, i+ 1}. So C = Di +Ei. dim|Di +Ei| = 1. Thus ∃ a unique curve in
this linear system passing through z. Coefficient of θ0 is zDi+Ei . Coefficient of
θi, Zr = Di, z ∈ Di. Curves transversal to Di−1, Di+1 and order tangency with
Di being −1 at the point z: C.Di−1 = 1, C.Di+1 = 1, C.Di = −1. So C = Di.
Coefficient is zDi . So

θi−1θi+1 = zDi+Eiθ0 + zDiθi.
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